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In the case of a nearly perfect conductor, i.e., when the skin depth 6 (in ordinary conduc- 
tors) or the London penetration depth hL (in superconductors) is much smaller than the other 
physical scales, the current flows only on the surface. Hence., the three-dimensional dis- 
tribution of the magnetic field is fully specified by the two-dimensional current distribution 
(boundary elements) on the surface The specific BEM (boundary element method) is called 
SCM (surface current method). In SCM, the surface is partitioned into N small areas, each 
with a looping current I, (1 < i < N). 1,‘s are determined by solving N simultaneous linear 
equations so as to eliminate the normal component of the magnetic field at the center of each 
area. The inductance is given in terms of the magnetic energy among N current loops. Thus, 
the problem is reduced to a two-dimensional one in SCM. To obtain the final results, the 
error estimate as a function of N is made and they are obtained as the extrapolation for N 
tending to infinity. Calculations for some examples including a fully three-dimensional object 
are presented. The effect of non-zero 6 and 6, can be, in the present SCM, made by thinning 
the object by the amount 6 (if the width of the conductor is larger than 6) but the more 
rigorous treatment is left for future study. 0 1988 Academic Press. Inc. 

1. INTRODUCTION 

The computation of inductance is very important for the design of circuitry and 
devices in Josephson junction technology, and various methods for inductance 
calculation are derived [l-3]. However, by these methods, when the current 
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distribution is three-dimensional, the calculation becomes impossible because the 
requirements for the computation time or memory is too severe in the current state. 

In the case of a nearly perfect conductor, i.e., when the skin depth 6 or the 
London penetration depth 6, is much smaller than the other physical scales, the 
conductor is assumed to be perfect, and the current is assumed to flow only on the 
surface. Hence, the magnetic field of the system is fully specified by the two- 
dimensional current distribution on the surface. 

If three-dimensional field problem is solved by computing the two-dimensional 
current distribution (boundary elements) on the surface, the requirements for com- 
putational resources are much reduced, which enables the calculation of an object 
with more complex shape. In this paper, a new variant of BEM, called the surface 
current method (SCM) which follows the above scheme, is introduced. Calculations 
for some examples including a fully three-dimensional object are presented. The 
error of SCM is discussed in relation to the influence of the extrapolation, which is 
used in order to obtain the linal result effectively. 

2. PRINCIPLES OF SCM 

In SCM, the surface is partitioned into N small areas, each with a looping 
current Zi (1~ i < N). Let the normal component of the magnetic field at the center 
of looping current Zi be Hi. Then, Hi can be written as the linear combination of Zi 
as shown in (1). 

Hi= i auZj, (1) 
j=O 

,O,lO) 
(0.40, 

O,O) 

(O,O,O) 
l (x,y,z) in mm 

- basic divisions 

------. subdivision square (n=2) 
each accompanying current loop I, 

FIG. 1. Divisions of the surface of a square block. Divisions of the surface of a square block are 
illustrated. I,, flows on the outer surface in this figure. Coordinates of Fig. 1 correspond to those of Fig. 2. 

581/74/l-7 
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(20,10,10) (30,10,10) 

- basic divlslons 

------ subdivlsions square 

each accompanying 

loop I, 

(20,0,10) (40,0,10) 

FIG. 2. Subdivisions of the surface of the square block. Each subdivision has a current loop. 

where av is a constant determined by the shape of the conductor and can be 
calculated directly from the positions of Ii and Zj. I, is any current path flowing the 
whole conductor (see Figs. 1,2). Because the current is redistributed by the 
condition described below, there is no restriction on the path where I,, flows even 
if it is chosen to flow the whole conductor. Hi must be 0 because the conductor is 
perfect. Hence, Zj can be obtained by solving the simultaneous linear equations (2). 

(2) 

where Z is the current of the source. 
The inductance L is given in terms of the magnetic field energy among current 

loops as shown in (3). 

r+M,zizj, 
4 J 

(3) 

where M, is the mutual inductance between current loops i and i, and can be 
calculated directly from the positions of the current loops. 

Therefore, the inductance of a three-dimensional object is reduced to a two- 
dimensional one in SCM, which may be regarded as a special case of BEM. 

3. EXTRAPOLATION ERROR OF SCM 

In SCM, the surface is divided into N,, basic divisions at first. Then, each basic 
division is subdivided into n subdivisions for each dimension. That is, total number 
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of subdivisions, N, is N,n2 for a three-dimensional object. The calculation is perfor- 
med for various n’s and the results are extrapolated to obtain the final inductance. 
The reason why the surface is divided in two steps (basic and sub) is for increasing 
the effectiveness of the extrapolation. In FEM (finite element method), the element 
division is executed mainly by experience. By this method, the shape of elements 
has irregularity, which decreases the effectiveness of extrapolations. In SCM, 
because such irregularity is absorbed by the basic divisions and the extrapolation is 
performed on the regular subdivisions, it is expected to work more effectively. 

The extrapolation enables the effective anticipation of the true inductance, i.e., 
the value at n = co. If the inductance can be computed from relatively small n’s, 
much time and memory for the calculation can be reduced. 

In the following, the extrapolation and the error of extrapolation are considered. 

3.1. Extrapolation and the Error Polynomial 

If the number of subdivision n is an integer, we can only use the following n 
sampling points to obtain an unknown value, 

f(n), f(n - 11, f(n - 21, . . . . f( 1). 

Let x = l/n. We must anticipate the extrapolated value at x = 0 (n = co) effectively. 
If the original function is a polynomial of degree k in x, the exact value can be 
obtained from the following k + 1 points, 

f(n), f(n - 11, f(n - 2), . . . . f(n -k). 

We use the polynomial defined from the above k + 1 points as an extrapolation 
polynomial P, k. Hence, 

P..k(kf(n-i);x)=h Jf (-lY(YJ (n-i)kf(n-i) fi (l-(n-j)x). (4) 
. r=O j=O 

i#i 

The error polynomial is defined as 

Z,, k(&f(n - i)) = P, Jlif(n - i); 0) (5.1) 

=&f (-l)i(:)(n-i)Lf(n-i) 
* r=O 

= k 4XnWn)), 

(5.2) 

where 

&f(n)=f(+f(n-1) (6.1) 

At + ’ f(n) = Af: . AJ(n). (6.2) 
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If f is decomposed into two parts as 

f(n)= i Uin-’ + g(n) 
i=O 

then 

z",,(ii~(~-i))=~d:(n*f.(n)) (7.1) 

(7.2) 

because 

d;(n-)=o (1 <m<k). (8) 

Hence, Z, ,(lig(n - i)) is the error from a, =f( co). In Table I, the results of the 
calculation Z,,,(&g(n - i)) are summarized for the various forms of g. We can 
analyze the error by changing k, II and examining which type the original function 
may be. 

3.2. Round-off Error 

If eachfi contains an error by E, 

Therefore, maximum of k, k,,, is determined by (10): 

TABLE I 

Z,, k for Various g(n)‘s 

s(n) Z”, k(n % k) 

(9) 

(10) 
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TABLE II 

k max Determined by the Round-off Error 

E= 16-6 8 = lb-l4 

n 

6=10-* 6= lo-’ 6 = 10-b 6=10-Z 6=10-4 6 = 10-6 6 = lo-* 

8 8 8 4 8 8 8 8 
12 1 4 3 12 12 12 12 
16 5 3 2 16 16 16 16 
20 3 3 2 20 20 20 11 
24 4 3 2 24 24 13 9 
28 3 2 2 20 16 11 I 
32 2 2 1 18 13 10 1 

E is caused by the round-off error and varies according to the precision of a number. 
6 is the maximum (absolute) error to be permitted. In Table II, k,,, is calculated 
for some cases. As shown in Table II, k must not be so large. 

3.3. Singularity of g(n) 

If g(n) has a singular point at n, such as 

g(n) =--&, (11) 
0 

then 

(z.,(Lig(n-i))l=~d:(~). 
0 

If k becomes too close to n, the value of (12) increases. When no = 1, kept which 
optimize (12) is shown in Table III. This is the second reason that k should not be 
so large. 

TABLE III 

k,,, when g(n) Has a Pole 

n k wt 

8 6 
12 4 
16 3 
20 3 
24 2 
28 2 
32 2 
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4. SOME EXAMPLES 

Based on the analysis considered in the previous section, the error analyses are 
performed on some examples. The results are compared to the experimental data or 
a theoretical value. The results of these error analyses indicate the accuracy of the 
calculation by SCM. 

4.1. Annulus 

The first example is the inductance of the thin annulus shown in Fig. 3. If rz is 
infinite, the inductance is given by (13): 

L=2r,p, (13) 

where p is the permeability of the conductor. The annulus is subdivided into n small 
areas in radial direction. Because of the rotational symmetry, the problem is 
reduced to a one-dimensional one. Mutual inductance between two current segment 
loops is given by (14) and (15). 

M”=2JRi~)“‘{( l+(k)-E(k)} 

4R, Rj 
k2= (Ri+ Rj)2’ (15) 

(14) 

where R,, Rj is the radius of each loop and K(k), E(k) are complete elliptic integrals 
of the first and second kind. The inductance calculation is done for various rz’s and 
n’s. The results are extrapolated in both directions and compared to (13). They are 

- basic division 

------ subdivision CUrTent (n=4) 

FIG. 3. Thin annulus. If rz is intinite, the inductance can be calculated analytically. 
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*10 -7 
26.0 c 

101 

FIG. 4. Inductance of the thin annulus is calculated and extrapolated for rz and n. As for r2 direction, 
the values are extrapolated by the quadratic polynomial. As for n direction, the results are extrapolated 
by the polynomials of l/n. a is the values without extrapolation; b, c, and d are the values extrapolated 
by the polynomials of - 1, - 2, and - 3 degree in n, respectively. 

summarized in Figs. 4 and 5, where rl = 1 and the extrapolation for r2 is performed 
by the quadratic polynomial determined by 3 points at rz = 1,2,4. As shown in 
Fig. 5, the inductance is obtained with 1% relative error at n 2 19 by the 
extrapolation polynomial of degree - 3 in n. The slope of a line in Fig. 5 indicates 
the exponent of the primarily contributing term in Z,k. The slope is smaller than 
- (ii- 1) when the highest exponent of the extrapolating function is -i. This fact 
indicates the existence of the term with the smaller exponent in the extrapolating 
function. 

FIG. 5. Relative error of the inductance of the thin annulus. Results of Fig. 4 are compared to the 
analytical value, and the errors are plotted. Curve numbers correspond to those of Fig. 4. 
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4.2. Parallel Thin Plates 

A second example is the inductance of infinitely long, parallel thin plates shown 
in Fig. 6. Current of two plates are the same and the direction is reversed. The 
inductance is given by (16). 

K(k) 
==PK’o’ (16) 

where K’(k) is the complementary function of K(k). In order to avoid the 
divergence of the inductance, calculations are performed for the current segments 
with finite spacing. The influence of this finite spacing is O(( l/n) log n) and can be 
eliminated by the extrapolation. In Fig. 7, convergence for various extrapolating 
functions are plotted. 

4.3. Square Block with a Square Hole 

The last example is the inductance of a square block with a square hole shown in 
Fig. 1. (Sub)divisions of the object are also shown in Figs. 1 and 2. Mutual induc- 
tance between two current segments is calculated by the equations described in the 
Appendix. Current distribution on the surface is plotted in Fig. 8. At line ~1,) 66 % 
of the whole current flows on the inner surface, 28 % on the upper (lower) surface, 
and the rest on the outer surface. At line CQ, 76% of the whole current flows on the 
inner surface, 21% on the upper (lower) surface, and the rest on the outer surface. 
Therefore, 10% flows into the inner surface from the upper (lower) surface between 
line ai and a,. The current density increases near the comer. The inductance L(n) is 
plotted in Fig. 9. d,(L(n)) is shown in Fig. 10, which is almost equal to d=(n)/&. 
Figure 10 indicates that the primary contributing term of L(n) is n-l. Therefore, 
L(n) is extrapolated by the polynomial of degree - 1 in n. The extrapolated value 
a, + d,(nL(n)) and its differential value di(nL(n)) are plotted also in Figs. 9 and 10. 

- basic division 

------- subdivision CUrTent (II=51 

FIG. 6. Parallel thin plates. Inductance of this system can be obtained analytically. In SCM, the 
calculations are performed for current segments with finite spacing to avoid the divergence of the mutual 
inductance between the segments. 



INDUCTANCE CALCULATION BY BEM 103 

FIG. 7. Inductance of the parallel thin plates. The results of the calculation are extrapolated by 
various functions. a is the value without extrapolation (L). b is d,(n d,(nL)) by which l/n, (l/n) log n 
terms are eliminated. c is $di(n* di(n*L)) by which l/n *, l/n, (l/n*) log n, (l/n) log n terms are 
eliminated. In d l/n2, l/n, (l/n*) log n, (l/n) log n, (l/n)(log n)* terms are eliminated. 

-2 .s 20. 0 
5 .^ 
z 15.0 
a, 
.” 
-u 

2 10. 0 

5. 0 

0. 0 
0 

5% contour lls? 

--- 1% contour line 

0 5. 0 
x direFii0on dk! 

20. 0 

FIG. 8. Current distribution of the square block of Fig. 1 is shown. Almost all current flows on the 
inner surface. 
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14. 5 I 

14. 0 b 

: 13.5 
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2 
z - 

.^ 13. 0 

a 

12. 5 - 

/ 

12.0 1 
I. 2. 3. 4. 5. 6. 7. 8. 9. 10. 

n 

FIG. 9. Inductance of the square block is calculated (a) and extrapolated by the polynomial of - 1 
degree in n (b). 

As shown in Fig. 10, d~(nL(n))~t:On-5. Therefore, d,(nL(n))z 10~~ and the 
extrapolation error is about lop3 at n = 10 which corresponds to less than 0.01% 
relative error. 

The inductance measurement is actually performed on the model in the condition 
that the current frequency is 32 MHz [4]. In the case, 6 is 11.6 pm and the conduc- 
tor is assumed to be perfect. The measured inductance is 14.2 nH which agrees with 
the calculation completely. 

The computational complexity of the computation is O(n4) to calculate Hi, O(n4) 
to calculate M,, and 0(n6) to solve the simultaneous linear equation. However, 

FIG. 10. Error of the inductance of the square block. Because d,(L) z O(n-*), L is extrapolated by 
the polynomial of - 1 degree in n. Differential of the error polynomial, Ai z O(C~). 
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TABLE IV 

Effect of dL 

Penetration Rigorous treatment Thinning Approximation Relative error 
( % ) W/w) (PW/J~) (%) 

0 0.31740 0.31740 0 
10 0.33917 0.34001 0.25 
20 0.36203 0.36493 0.80 
30 0.38718 0.39283 1.46 
40 0.41542 0.42468 2.23 
50 0.44782 0.46201 3.17 
60 0.48516 0.50735 4.57 
70 0.52790 0.56540 7.10 
80 0.57640 0.64725 12.29 
90 0.63085 0.78610 24.61 

because actual n’s are small and because it is unnecessary to calculate M, when two 
current segments are vertical, the most costly calculation is Hi. When n = 10 and 
N = 455, CPU time to obtain the current distribution (set the matrix elements and 
solve it) is about 15 min, and to compute the inductance is about 10 min by 
Fujitsu M380. 

5. THE EFFECT OF 6, 

In the case of an actual conductor, the inductance increases in comparison to the 
case where the conductor is assumed to be perfect, because the London penetration 
depth 6, is not 0. For the system consisting of two parallel planes of infinite extent 
or of two coaxial conductors, the effect of 6, is the same as considering the system 
having larger gaps obtained by thinning both conductors by the amount a,, 
because by definition the effect of 6, is the same as though the current is concen- 
trated at the plane 6, from the surface. As one of the rough estimates let us 
consider the thinning effect for the two-dimensional transmission line system shown 
in Fig. 10 which may be one of the worst cases. Table IV shows the results of 
calculation, one for the proper treatment of 6, and the other for a thinned system 
with 6, = 0 (the program used is described in [2]). In this case, agreement is accep- 
table for a small penetration. The error evaluation of the approximation for other 
configurations and more rigorous treatment for large penetration are left for future 
study. 

6. CONCLUDING REMARKS 

In the case of a nearly perfect conductor, the current flows only on the surface. 
Hence, the magnetic field of the system is fully specified by the two-dimensional 
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0.2um 

FIG. 11. Superconducting stripline. Effect of aL is estimated for the special case of superconducting 
stripline system. This system may be one of the worst case because if penetration is lOO%, the thinning 
approximation diverges. 

current distribution on the surface. In SCM, the surface is partitioned into N small 
areas, each with a looping current Zi (1 < i < N). Z;s are determined by solving N 
simultaneous linear equations so as to eliminate the normal component of the 
magnetic field at the center of each area. The inductance is given in terms of the 
magnetic energy among N current loops. Therefore, the inductance of a three- 
dimensional object is reduced to a two-dimensional one in SCM, which enables the 
inductance calculation of an object with more complex shape. 

In SCM, extrapolations are used to obtain the final result from small N’s. By the 
extrapolation, the precision of the computation increases drastically. Moreover, the 
error estimate becomes possible by examining the extrapolation polynomial. 

Reduction to a two-dimensional problem and the use of extrapolations save 
much computational resources. When calculating the model shown in Fig. 11 with 
the accuracy of 0.66 % error, SCM only needs 0.3 % CPU time and 1.6 % memory 
space by the method described in [2] (most of the saving seems to come from 
extrapolations). 

Calculation for a fully three-dimensional object agrees well with experimental 
datum. More rigorous treatment of the 6, effect is left for future study. Calculation 
of the 6, effect within the scheme of present SCM is in progress. 

APPENDIX I: EVALUATION OF MUTUAL INDUCTANCE INTEGRAL 

Mutual inductance integral between two lines: 

P,(x,, Yl9 21) + p*ch Yz, z3) and P3(x3, Y3, z3) + P,(x,, Y4, z4) 

is given by 
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where c is the cosine of the angle between PIP, and P,P,, r(u, u) is the distance 
between Pi + P1Pz(u/r12) and P3 + P3P4(u/r3J, and rij is the distance between Pi 
and Pi. Hence, 

C= 
v1- p2w3 - P4) 

r12r34 

r(u, u) = (u’+ u2 -t- rX - 2~211~ - 2b, u - 2b20)1’2, 

where 

b =(P2-Pl)(P3-P,) 
1 

r12 

b 
2 

= v4 - PdV1- P3) 

r34 

Let d be the minimum distance between the above two lines extended to infinity. 
In the following, the evaluation of M is classified according to the value of c and d. 

AI.l. In the nonparallel case, ICI # 1. In this case, 

d= duo, uo) 

r(z4, u) = rO(u - zig, u - u,), 

where 

r,,(x, y) = (x2 + y2 - 2cxy + d2)l12. 

Therefore, 

~=~r’2-uodx~r’4-uody~. 
-WI - ul 0 3 

The above integral is given by the indefinite integral 

f s dx dy ’ - = gk Y I+ 4x, Y ), 
r0h Y) 

where 

=Y lo& - CY + ro(x, Y)) +x lw(y - cx + rob, y)) 
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cd 
= - arc tan sro(x, Y) d 

s xys* + cd2 

=:ATANZ(.W,(X, v) d,Xy.3+Cd2) 

s=(l -c*p*. 
In numerical calculation, the FORTRAN function ATAN 2 should be used for 

proper branch selection of the arctan function. Hence, 

~=g(~,2--o,~,,-~o)+g(-~o, -u,)-g(r,,--0, -uo)-g(-u~,r34-u~) 

+ h(r,* - uo, r34--o)+Wuo, -Vo)--(T12-u,, -uo)-h(-Uo,r34-uO). 

AI.2. In the (anti)parallef case, Ic( = 1. 
From Fig. 12 and the definitions of b, and b,, we see the identity 

b,= -cb, 

Y(U, u) = ((u - c(u - b2))2 f d2)“2 

d*=r:,-b:. 

u= 0 b T z b,+ r 

E: ? 

III 

34 

v= b2(-bl) 0 T 
34 

<C=I> 

u= 0 b-r4r b 2 1 

I: r: 

m P, ? 

v= b2( b,) r 0 34 

<c=-1> 

FIG. 12. Diagrams for two parallel current segments when d# 0 are shown. 
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Hence, 

where 

w = c(u - b,) 

rp(u, w) = ((u- w)‘+ d*)“’ 

AI.2.1. When d # 0. The above definite integral 
integral 

is given by the indefinite 

I i 1 
dx dy-= 

rpk Y) 
g,b, Y) + rp(x, Y), 

where 

g,(x, Y) = Y lo& - y + rp(x, y)) + x log( y - x + rp(x, y)). 

Therefore, 

l&f = g,h*~ c(r34 - 62)) + g,(O, -cb2) - gp(r12, -cb,) -gp(O, c(r34 - b2)) 

4 r24+r13-r23-r14. 

AI.2.2. When d = 0. 

M=Jj:‘2dui.d:y+b’dw& 

=l~~-r~21~ogl~~-r~21+Icr~4+b,JlogJcr34+b,J 

- PII log 1611 - Icr34 + b, - r121 log Icr34 + b, - r,2). 
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